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Thermophysical Properties from the Equation of State 
of Mason and Co-workers ~ 

A. Boushehr i  2" 3 and H.  E s l a m i  2 

The theory gives formuhts for calcuhtting the three temperature-dependent 
parameters of the equation of state from the intermolecular potential, But the 
second virial coefficient also serves to predict the entire equation of state in 
terms of two scaling parameters and, hence, a number of other thermodynamic 
properties including the Joule-Thomson inversion curve, bulk modulus, secant 
bulk modulus, and inverse isobaric expansivity among others. Agreement with 
experimental data is quite good. 
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1. I N T R O D U C T I O N  

The influence of  a t t rac t ive  in termolecular  forces can be t reated by statisti-  
c a l -mechan ica l  pe r tu rba t ion  theory,  as can the softness of  repulsions. 
Given the in te rmolecular  potential ,  it is possible to predict  the thermo-  
dynamic  proper t ies  of  molecular  fluids. Three integrat ions are needed, one 
to find the second virial  coefficient, one to find a scaling factor, and one to 
find an effective hard-sphere  diameter .  The equat ion is usable with much 
less input  than  the full in termolecular  potential ,  since the scaling factor and 
the effective d iamete r  are nearly universal  functions when expressed in 

sui table  reduced units. 
Knowledge  of  the second virial  coefficient as a function of  t empera tu re  

enables  one to predict  the entire equat ion of state (EOS),  as shown by Ibm 
et al. [ 1 ]. In addi t ion ,  one tempera ture - independent  cons tant  that  is the 
character is t ic  of the par t icu la r  substance is needed. In the present  work,  
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this EOS derived by Ihm, Song, and Mason ( ISM/ is  used to find selected 
thermophysical properties of fluids, and the results are compared with 
experimental values. 

2. T H E O R E T I C A L  C O N S I D E R A T I O N  

We consider the statistical-mechanical equation of state derived by 
Song and Mason [2], which is based on the Week-Chandler Anderson 
(WCA) perturbation theory lbr the condensed state. The derivation begins 
with the equation relating the pressure to the pair distribution function, 
g(r), 

p k f  \ 3 k T J  \ & / g ( 1 " )  r ~ dr 1) 

where p is the density, P is the pressure, k T  is the thermal energy per 
molecule, and #u/@r is the derivative of the intermolecular potential l\mc- 
tion with respect to the distance r. Upon applying the perturbation scheme 
of the WCA method to the potential function and working out a correc- 
tion, for attractive forces, the equation of state reads [1] 

P ( B - ~ ) p  
- 1 + +~pG(bp) (2) 

p R f  1 + 0.222bp 

where the new corresponding-states principle has the tbrm 

( -Btp ] '  
G(bp) ~=:r Z - l + ( l ~ . _ ~ 2 2 2 ~ p )  j ~ ( 1 - 2 b p )  (3) 

and Z =  P / p R T  is the compressibility factor. Here G(bp) is the average pair 
distribution function at contact lbr equivalent hard convex bodies that still 
have pairwise additivity of the intermolecular forces. The many-body 
nature of the system may be contained in G(bp). 2 is the magnitude of the 
slope of G ~ vs bp, a constant that must be determined empirically. 2 is 
shown to incorporate quantum effects [ 3 ]. 

The parameters B, :t, and b are related to the intermolecular potential, 
u, by integrations and are defined as follows: 

B ( T ) = 2 n /  ( 1 - e - " x Z ) r  2dr (4) 
.J O 

i ""' - ,,,, k/) 
:z(T) = 2n (1 - e  r=dr (5) 

d~ 
b = ~  + T - -  (6) 

dT 
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where u. is the repulsive part of u and r,,, is the position of minimum in u. 
However, B(T) can be found experimentally, and cr and b(T) can be 
calculated fi'om B(T) by means of simple two-constant scaling rules [4].  
The reason is that b and 0c depend only on the intermolecular repulsive 
forces and are therefore relatively insensitive to the details of the shape of 
the intermolecular potential: they can be characterized by two constants 
corresponding to an average potential strength and range. 

3. C O M P A R I S O N  WITH EXPERIMENTAL DATA 

The equation of state is related by rigorous thermodynamic expres- 
sions to many equilibrium properties, which can be used as tests. In this 
section we give a selection of such tests. These include the Joule-Thomson 
inversion curve, bulk modulus, secant bulk modulus, and inverse isobaric 
expansivity. 

3.1. Joule-Thomson Inversion Curve 

The Joule-Thomson inversion curve is a sensitive test of the EOS [ 5 ]. 
The Joule-Thomson coefficient is related to the equation of state by the 
thermodynamic formula 

T(8 l(/'~,T)p- V (7) 
/ l . I  t = CI  ' 

700 

600 

500 

400  

1"2 300  

200 

100 

0 I I I 

100 200 300 400 

P. Bar 

Fig. I. The curve is calculated from the present equation 
of state, Eq. (8). and the points are experimental data For 

nitrogen [ 7]. 
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where C~, is the specific heat capacity at constant pressure. The inversion 
curve is determined by the condition I I jT  = 0: for the present equation of 
state this yields 

T(dB/dT)-B-(T(d~/dT)-oL) T(d~/dT)-o~ + 
1 + 0.222bp 1 - 2bp 

0 .22 ) , (B-  cc)(b - T(db/dT)) o~2(T(db/dT)-b) 
+ (1 + 0.222bp) 2 P +  (1 -),bp) 2 p = 0  (8) 

If p is eliminated between Eqs. (2) and (8), the inversion pressure may be 
obtained in terms of the inversion temperature. Analytical elimination of p 
is not straightforward, but it is easy to proceed numerically. The curve 
calculated Ikom Eq. (8), with smoothed values of B(T) from Ref. 6, is com- 
pared with experimental points for nitrogen [7] .  The results are shown in 
Fig. 1. 

3.2. Bulk Modulus 

The reduced bulk modulus  is defined as 

f O P \  / 

where PB is Boyle's density. 
The linear temperature dependence of the reduced bulk modulus  for 

each isochore has been investigated using an equation of state based on 
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Fig. 2. The calculated and experimental values of the 
bulk modulus divided by Rpi~ of  Ar at p = 28 ( � 9  p = 30 
( � 9  and p = 3 3  ( � 9  tool- L - ' .  The line was calculated 
frona Eq. 12). and the symbol s  are experimental values. 
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statistical mechanical theory (ISM EOS) for Ar. The result is in good 
agreement with reliable experimental data [8]. The values of ~(T) and 
b(T) for pure Ar can be calculated using Table 1 of Ref. 1. We have used 
the experimental values of the second virial coefficient for Ar [6]. The 
results are shown in Fig. 2. 

3.3. Secant Bulk Modulus 

The secant bulk modulus is defined as 

V . ( P  - P . )  P - P,, 
B (10) 

V , , -  V 1 - Po/P 

where I/. and P. are reference volume and reference pressure, respectively. 
B corresponds to the slope of the secant cutting the compression curve. The 
linear relationship between the secant bulk modulus and the temperature at 
constant density can be obtained lbr molecular liquids by using Eq. (2). 
The generalization of Eq. (2) to mixtures of any number of components 
takes the form [9] 

P 
- 1 + p ~ x,.x~( Bit - c%F~,) + p ~ .v~xjoc~iGi j 

p R T it ii 
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Fig. 3. The calculated and experimental values o f  

the secant  bulk modulus  of liquid Kr tit 26.667 tool.  
L ~ ( �9 ) [ 12], a 0.556 Kr  +(}.444 Xe liquid mixture 
at 2 5 m o I . L  ~ ( � 9  Kr 
liquid mixture  at 3 1 . 7 4 6 m o I . L  i ( � 9  [13] .  The  
lines were calculated from Eqs. ( 21 and Eq. ( I I I for 
Kr  and mixtures,  respectively. The  symbols  are 

experimental  values. 
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where x i and x i are mole fractions, and the summations run over all com- 
ponents of the mixture. The quantities ~zi/ and Bi/ are related to the pair 
potential uit(r). G~ and F,i are defined in Ref. 9. 

We now compare the theoretical results from these equations of state 
with experimental data for Kr as a molecular liquid, and for Kr-Xe and 
Ar-Kr  as liquid mixtures. We have used the HFD-C potential given by 
Aziz and co-workers [ 10, 11 ]. for obtaining the values of B~, b~/, and air 
for Kr-Xe and Ar-Kr.  The results are shown in Fig. 3, where the agree- 
ment between calculated and experimental values is remarkably good. The 
values of V, ( Lmol  ~) and P ,  (bar) used in Fig. 3 tbr Kr, Kr-Xe, and 
Ar-Kr  are (0.0446, 37.4), (0.0453, 61.0), and (0.0366, 135.8), respectively. 

3.4. Inverse Isobaric Expansivity 
The isobaric expansivity o~=(OV/~T)p/V can be calculated fi'om Eqs. 

(2) and (11) for Ar and Ar-Kr  mixture respectively. The resultant equa- 
tions are too complicated to give the physical interpretation. But it is easy 
to proceed numerically. We have performed such calculations over a wide 
range of pressure and temperatures The results are shown in Figs. 4 and 5. 
We have used the best available intermolecular potentials of the HFD-C 
form given by Aziz and co-workers [11 ] for Ar-Kr.  Figure 4 shows the 
isochores of 1/~ vs. P for At. A typical isochores is shown for Ar-Kr  in 
Fig. 5. This regularity provides a significant constraint on equations of 
state. 
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Fig. 4. Inverse isobar ic  expans iv i ty  versus pressure 

Ibr a rgon  isochores  at p = 28 (Q), p= 30 ( �9 ). and  
p = 3 3  I l l l m o I - L  i [7 ] .  
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Fig. 5. Same as Fig. 4 t\w 0,485 Ar +0.515 Kr isochorcs at 
p = 2 9  ( � 9  p = 3 2  � 9  and p = 3 4  ( � 9  i 

4. C O N C L U S I O N  

The Joule-Thomson reversion curve seems to be reasonable and 
insensitive to the model used for b and ~. A new regularity of the reduced 
and secant bulk modulus as a function of temperature has been found for 
the ISM EOS. The regularity holds for Ar and Kr as well as Kr-Xe and 
Ar-Kr  mixtures, while the isochores of 1/~ vs P provides a constraint on 
EOS. Finally, our present work (ISM EOSI compared to Ref. 14 (LIR 
EOS) indicates that a more reliable Joule-Thomson inversion curve can be 
obtained. In addition, the regularities have been extended to fluid mixtures. 
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