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Thermophysical Properties from the Equation of State
of Mason and Co-workers'

A. Boushehri>* and H. Eslami?

The theory gives larmulas for calculating the three temperature-dependent
parameters of the equation of state from the intermolecular potential. But the
second virial coeflicient also serves to predict the entire equation ol state in
terms of two scaling parameters and. hence. a number of other thermodynamic
properties including the Joule-Thomson inversion curve, bulk modulus. secant
bulk modulus. and inverse isobaric expansivity among others. Agreement with
experimental data is quite good.
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1. INTRODUCTION

The influence of attractive intermolecular forces can be treated by statisti-
cal-mechanical perturbation theory, as can the softness of repulsions.
Given the intermolecular potential, it is possible to predict the thermo-
dynamic properties of molecular fluids. Three integrations are needed, one
to find the second virial coefficient, one to find a scaling factor, and one to
find an effective hard-sphere diameter. The equation is usable with much
less input than the full intermolecular potential, since the scaling factor and
the effective diameter are nearly universal functions when expressed in
suitable reduced units.

Knowledge of the second virial coefficient as a function of temperature
enables one to predict the entire equation of state (EOS), as shown by [hm
et al. [1]. In addition, one temperature-independent constant that is the
characteristic of the particular substance is needed. In the present work,
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this EOS derived by Ihm. Song, and Mason (ISM} is used to find selected
thermophysical properties of fluids, and the results are compared with
experimental values.

2. THEORETICAL CONSIDERATION

We consider the statistical-mechanical equation of state derived by
Song and Mason [2], which is based on the Week—Chandler-Anderson
(WCA) perturbation theory for the condensed state. The derivation begins
with the equation relating the pressure to the pair distribution function.
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where p is the density, P is the pressure, k7T is the thermal energy per
molecule, and &u/dr is the derivative of the intermolecular potential func-
tion with respect to the distance r. Upon applying the perturbation scheme
of the WCA method to the potential function and working out a correc-
tion. for attractive forces, the equation of state reads [ 1]
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where the new corresponding-states principle has the form
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and Z= PjpRT is the compressibility factor. Here G(hp) is the average pair
distribution function at contact for equivalent hard convex bodies that still
have pairwise additivity of the intermolecular forces. The many-body
nature of the system may be contained in G(bp). 4 is the magnitude of the
slope of G~' vs bp, a constant that must be determined empirically. 4 is
shown to incorporate quantum effects [3].

The parameters B, «, and b are related to the intermolecular potential,
u, by integrations and are defined as follows:

.
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where u, is the repulsive part of u and r,, is the position of minimum in u.
However, B(T) can be found experimentally, and «(7T) and b(T) can be
calculated from B(T) by means of simple two-constant scaling rules {4].
The reason is that b and « depend only on the intermolecular repulsive
forces and are therefore relatively insensitive to the details of the shape of
the intermolecular potential; they can be characterized by two constants
corresponding to an average potential strength and range.

3. COMPARISON WITH EXPERIMENTAL DATA

The equation of state is related by rigorous thermodynamic expres-
sions to many equilibrium properties, which can be used as tests. In this
section we give a selection of such tests. These include the Joule-Thomson
inversion curve, bulk modulus. secant bulk modulus, and inverse isobaric
expansivity.

3.1. Joule—Thomson Inversion Curve

The Joule—Thomson inversion curve is a sensitive test of the EOS [5].
The Joule-Thomson coefficient is related to the equation of state by the
thermodynamic formula

Twevern ,-V
P (7)
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Fig. 1. The curve is calculated from the present equation
of state, Eq. (8). and the points are experimental data for
nitrogen [7].
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where C, is the specific heat capacity at constant pressure. The inversion
curve is determined by the condition g ,-=0: for the present equation of
state this yields
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If p is eliminated between Egs. (2) and (8), the inversion pressure may be
obtained in terms of the inversion temperature. Analytical elimination of p
is not straightforward, but it is easy to proceed numerically. The curve
calculated from Eq. (8), with smoothed values of B(T) from Ref. 6, is com-
pared with experimental points for nitrogen [ 7]. The results are shown in
Fig. 1.

3.2. Bulk Modulus

The reduced bulk modulus is defined as

— oP /
B=p<—> {RTpg (9)
op/r!

where py is Boyle’s density.
The linear temperature dependence of the reduced bulk modulus for
each isochore has been investigated using an equation of state based on
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Fig. 2. The calculated and experimental values of the
bulk modulus divided by Rp,, of Ar at p=28 (®). p=30
(@), and p=33 (M)mol-L~". The line was culculated
[rom Eq. (2). and the symbols are experimental values.
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statistical mechanical theory (ISM EOS) for Ar. The result is in good
agreement with reliable experimental data [8]. The values of a(T) and
b(T) for pure Ar can be calculated using Table 1 of Ref. 1. We have used
the experimental values of the second virial coefficient for Ar [6]. The
results are shown in Fig. 2.

3.3. Secant Bulk Modulus

The secant bulk modulus 1s defined as

V()(P_Pn): P_Pn
Vo=V 1—po/p

where V, and P, are reference volume and reference pressure, respectively.
B corresponds to the slope of the secant cutting the compression curve. The
linear relationship between the secant bulk modulus and the temperature at
constant density can be obtained for molecular liquids by using Eq.(2).
The generalization of Eq.(2) to mixtures of any number of componeuts
takes the form [9]

B=

(10)
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Fig. 3. The calculated and experimental values ol
the secant bultk modutus of liquid Kr at 26.667 mol -
L' () [12]. 4 0536 Kr + 0.444 Xe liquid mixture
at25mol. L' (@) [12]. and a 0.485 Ar + 0515 Kr
liquid mixture at 31.746 mol-L~' (M) [13]. The
lines were caleulated from Egs. (2) and Eg. (11) for
Kr and mixtures, respectively. The symbols are
experimental values.
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where x; and x, are mole [ractions, and the summations run over all com-
ponents of the mixture. The quantities a; and B are related to the pair
potential w,(r). G; and F; are defined in Ref. 9.

We now compare the theoretical results from these equations of state
with experimental data for Kr as a molecular liquid, and for Kr-Xe and
Ar-Kr as liquid mixtures. We have used the HFD-C potential given by
Aziz and co-workers [ 10, 11]. for obtaining the values of B;. b, and «,
for Kr-Xe and Ar-Kr. The results are shown in Fig. 3, where the agree-
ment between calculated and experimental values is remarkably good. The
values of ¥, (L mol~ ") and P, (bar) used in Fig. 3 for Kr, Kr—Xe, and
Ar-Kr are (0.0446, 37.4), (0.0453, 61.0), and (0.0366, 135.8), respectively.
3.4. Inverse Isobaric Expansivity

The isobaric expansivity a =(8V/8T),/V can be calculated from Egs.
(2} and (11) for Ar and Ar-Kr mixture respectively. The resultant equa-
tions are too complicated to give the physical interpretation. But it is easy
to proceed numerically. We have performed such calculations over a wide
range of pressure and temperatures The results are shown in Figs. 4 and 5.
We have used the best available intermolecular potentials of the HFD-C
form given by Aziz and co-workers [11] for Ar-Kr. Figure 4 shows the
isochores of 1/a vs. P for Ar. A typical isochores is shown for Ar-Kr in
Fig. 5. This regularity provides a significant constraint on equations of
state.
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Fig. 4. Inverse isobaric expansivity versus pressure
lor argon isochores at p =28 (@), p=30 ( ¢). and
p=233 (Mymol- L' [7].



Equation of State of Mason and Co-workers 1033

800

700 1+

600

500 1

400 +

1 a, K

300 1

200 +

100 1

0 500 1000 1500
P, Bar

Fig. 5. Sume as Fig. 4 for 0485 Ar 40515 Kr isochores at
p=29 (@), p=32(®) and p=34 (B)mol-L

4. CONCLUSION

The Joule-Thomson inversion curve seems to be reasonable and
insensitive to the model used for b and «. A new regularity of the reduced
and secant bulk modulus as a function of temperature has been found for
the ISM EOS. The regularity holds for Ar and Kr as well as Kr-Xe and
Ar—Kr mixtures. while the isochores of 1/« vs P provides a constraint on
EOS. Finally. our present work (ISM EOS) compared to Ref. 14 (LIR
EOS) indicates that a more reliable Joule-Thomson inversion curve can be
obtained. In addition. the regularities have been extended to fluid mixtures.
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